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NATIONAL ADVlSORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2323

THEORETICAL INVESTIGATION OF SUBMERGED

INLETS AT LOW SPEEDS

By Alvin H. Sacks and John R. Spreiter

SUMMARY

The general characteristics of the flow field in a submerged air

inlet are investigated by theoretical, wind--tunnel, and visual-flow

studies.

Equations are developed for calculating the laminar and turbulent

boundary--layer growth along the ramp floor for parallel, divergent, and

convergent ramp walls, and a general equation is derived relating the

boundary-layer pressure losses to the boundary-layer thickness. It is

demonstrated that the growth of the boundary layer on the floor of the

divergent-ramp inlet is retarded and that a vortex pair is generated in

such an inlet. Functional relationships are established between the

pressure losses in the vortices and the geometry of the inlet.

A general discussion of the boundary layer amlvortex formations is

included, in which variations of the various losses and of the incremental

external drag with mass-flowratio are considered. Effects of compressi-

bility are also discussed.

INTRODUCTION

Among the various types of air inlets considered for use with air-

craft internal flow systems is the submerged or flush inlet. As a

result of extensive experimental research by the NACA at its Ames Aero-

nautical Laboratory, reported in several papers and reviewed in refer-

ence I, a particular inlet of this type was developed (fig. l) exhibiting

pressure recovery and drag characteristics which make it suitable for

application to aircraft.

In contrast to the nose inlet and the wing leading-edge inlet, the

submerged inlet doesnot operate in essentially free-stream air. The

!
J



i

J

NACA TN 2323

air entrained by the submerged Inlet_suffers pressure losses, the
magnitude and distribution of which may be drastically affected by the

geometry of the approach ramp. Z The design of this approach ramp, in
both profile and plan form, is a problem basic to the further develop-

ment of submerged inlets in general. Although some of the basic concepts

to be presented here regarding the flow in submerged inlets are known

(see reference i) _ the purpose of the present paper is to analyze

theoretically the relative importance of the various design parameters

and to indicate, insofar as possible, methods for calculating their
effects on the over-all performance of a submerged inlet.

LIST OF IMPORTANT SYMBOLS

• . . .

AD

b

C

d

h

H

Ho

HI

m_mo

M

P

Po

q

qo

R

duct entrance area

local width of ramp

fraction of vortex losses entering duct

depth of duct entrance measured between lip and ramp floor

local depth of ramp

boundary--layer--shape parameter (-_)

free--stream total pressure

local total pressure

ramp length

mass-fl0w ratio

Mach number

PzVIpouo/

local static pressure
D

free--stream static pressure

peripheral velocity in vortex field

free-stream dynamic pre ssure <l pUoe_

Reynolds number

iThe ramp is here defined as the inclined passageway leading to the duct

entrance. (See fig. 1.) It is composed of a floor and two side walls.
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r

rc

S

U

Uo

U I

V

V l

V

W

W 1

x,y

F

7

AC D

AH

AH

qo

5

8*

radial coordinate

radius of vortex core

width of fuselage surface from which boundary layer enters one

vortex core

velocity component inside the floor boundary layer in local stream
direction

free--stream velocity

local velocity at edge of the boundary layer

velocity vector

average velocity at duct entrance

velocity component inside the floor boundary layer perpendicular

to the ramp floor

velocity component perpendicular to ramp wall

velocity component inside the boundary layer perpendicular to u
and v

rectangular coordinates

local ramp angle relative to the free-stream direction

circulation

_ _u_ an
Ul

incremental drag coefficient due to air inlet

loss in total pressure I (H O -- HI)

nondimenslonal average loss in total pressure defined in

equation (I)

boundary-layer thickness

boundary--layer displacement thickness

Y
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f

e

A

k

v

P

Po

Pz

'1"

cp

W

BL

BLC

BLF

BLS

e

i

SEP

V

boundary--layer momentum thickness

nondimensional parameter involving Reynolds number and pressure

gradient

_2 du 1

V dx

friction coefficient

kinematic viscosity (_)

mass density

free--stream mass density

average mass density at duct entrance

shear stress

polar coordinate

i

--- dr l
_U 1 Ul 2

local angle of rsmp--wall divergence

nondimensional shear-stress variable

Subscripts

boundary layer

boundary--layer control on fuselage due to inlet

ramp floor boundary layer

fuselage surface boundary layer entrained in vortex cores

contributing to external drag

contributing to internal pressure losses

due to separation of fuselage boundary layer at the edges of

the inlet

vortex
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TEE FLOW IN SUBMERGED INLETS

General Observations

The complex thre_-dlmensional character of the flow in a submerged

inlet, involving appreciable viscous effects, makes direct mathematical

analysis difficult. In order to indicate the nature of the idealizations

to be made and to Justify the simplifications introduced in the solution

of the problem, the present section is concerned wlth a qualitative

examination of the potential and viscous flow fields and their interaction.

In general, there are three classes of plan forms possible for an

approach ramp (see sketch) -- it may have parallel walls (a), divergent

walls (b), or convergent walls (c).

(a) parallel walls (b) divergent walls (c) convergent walls

It appears that the flow in the parallel--walled ramp can generally be

approximated with a two-dimensional analysis, at least for the case of

moderate mass-flow ratios. The flow in the divergent_ed ramp,

however, exhibits two important differences from that of the parallel--

walled ramp. These differences rule out the use of a two-dimensional

analysis even as a first approximation. First, the boundary layer

cannot be expected to behave as one in a two-dlmensional flow since the

flow near the floor of this ramp is divergent at all mass--flow ratios.

Second, the external stream, being no longer parallel to the ramp wslls,

must flow over the top of the walls into the inlet. It is well known

that, if the velocity over such a corner is to remain finite, the

formation of a vortex sheet is necessary, e Thus, a vortex sheet is

formed along each edge of the divergent-wslled inlet. The study of the

flow field in such an inlet, then, involves not only the behavior of the

boundary layer but also the behavior of the vortex sheets.

Since a knowledge of the potential flow is required to determine

the character of the boundary layer, it is first necessary to consider

aThis was in fact stated by Prandtl (reference 2) as a fundamental

theorem: "Projecting edges of bodies are, for a flow meeting them

transversely, always lines of confluence (and therefore as a rule

origins of vortex sheets)."

z
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the general behavior of the vortex sheets and their influence on the

flow. Well forward in the divergent ramp, the vortex sheets, having

Just left the ramp walls, are still essentially flat, as shown in the
sketch:

L

A

A--A

This arrangement of free vortices, however, cannot persist farther

downstream in the inlet since each vortex filament making up the sheet,

being free to move, must move in accordance with the velocities induced

upon it by all the other vortices present in the fluid. The induced

velocities are such that the filaments will move into the ramp and roll

up as they proceed toward the duct entrance in a manner much as shown

in the sketch.

If the process described above mere

permitted to continue far downstream

without further change in inlet cross

section (i.e., in a parallel-walled open

channel extending downstream from the

divergent ramp), the tvo sheets would

eventually become completely rolled up

into two more or less cylindrical vortex

regions.

The third possible ramp plan form,

the convergent ramp, presents a problem of

analysis similar to that of the divergent

ramp in several respects. First, the

boundary-layer growth along the ramp floor

is affected by the convergence of the flow. Second, due to the non--

parallel ramp walls, there is again the possibility of the formation and

rolling up of a pair of vortex sheets. In this case, however, if such a

vortex pair is formed_ the rolling up will generally occur outside the

inlet (due to the upward flow over the ramp edges) and therefore have

little influence on the internal pressure recovery of the inlet.

Sincethe divergent-ramp inlet represents the most general case in

that its pressure recovery is affected by all of the influences discussed,

and since it has shown promise experimentally from the standpoint of
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over-all performance, the bulk of the present analysis will be developed

for this case. However, as will be mentioned from time to time, the

equations to be derived will be generally applicable to all three

classes of ramp plan forms unless a statement to the contrary is made.

Visual-Flow Studies

The general observations made in the preceding paragraphs regarding

the vortex formations have been substantiated by visual--flow studies of

a divergent-ramp inlet. Taese tests were made in a water tank (fig. 2)

by driving the model vertically down into the water, the surface of which

was dusted with fine aluminum powder. The motion in transverse planes

was observed by photographing the water surface with a motion--picture

camera. A typical series of photographs is shown in figure B, in which

the formation and rolling up of the vortex sheets are clearly demonstrated.

Behavior of the Boundary Layer

The boundary layers of interest in the submerged inlet are those

developed on the ramp floor and the ramp walls. However, since the

boundary layer on the ramp wal_lhas a zero initial thickness and

develops over a relatively small wetted area, its contribution to the

losses in the inlet is not likely to be significant unless the ramp

divergence is so large that the flow separates from the walls.S Since

the floor boundary layer covers a larger wetted area and may have a

substantial initial thickness, it is of primary concern. Therefore,

equations will be developed for the calculation of the boundary--layer

growth along this surface.

As might be anticipated, the rate of growth of the floor boundary

layer will be shown to depend upon the pressure distribution and upon

the divergence (or convergence) of the flow. The pressure distribution,

in turn, is determined by the inlet geometry and by the mass--flow ratio;

whereas the divergence of the flow is primarily influenced by the plan

form of the inlet and by the induced velocities due to the rolled--up

vortices.

sCalculations have indicated that the order of magnitude of the wall

boundary-layer loss is _ to lO percent of that due to the floor

boundary layer.
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__ _,---vortex
_ Lne

At the surface of the divergent--ramp

floor, all the velocities induced by the

vortices are in directions away from the

center line of the ramp. This effect

reaches a maximum underneath the centers

of the rolled--up vortex sheets. Thus, the

flow along the floor of the divergent ramp

may be divided into two general types of

regions, as shown in the sketch. The
effect of the vortices on the flow in

region I is essentially to increase the divergence of the flow; whereas

that in regions II is to reduce the divergence of the flow. It will be

demonstrated in the analysis that the boundary--layer growth is

accelerated by convergence of the flow and retarded by divergence of the

flow. It can be seen, therefore, that the floor boundary layer will

grow most rapidly near the ramp walls, while toward the center of the

ramp it will grow more slowly or may, in fact, diminish in thickness as

the duct entrance is approached. In any case, the boundary layer on the

floor of a divergent ramp will be thinnest near the center llne and

thickest toward the ramp walls.

• ,_

f

Inlet Pressure Losses

/-surface B.L.

//-vortex sheet

°ore
B.L.

_floor B.L.

From the foregoing discussion,

a qualitative picture can be con--

structed of the flow which is finally

developed in the inlet Just ahead of _

the duct entrance at moderately high

mass-flow ratios. 4 Such a picture

is presented in cross section in the

sketch. The main sources of pressure

losses in the duct entrance, then,

are the floor boundary layer and

some portion of the vortex cores

(including entrained surface boundary

layer), depending upon the relative

locations of the duct lip and the

vortices.

It has become customary in low-speed inlet work to express pressure

loss as the ratio of the total-pressure loss to the free--stream impact

pressure. Since it is a practical certainty that the flow in a duct is

not uniform and that the losses vary from point to point across the

inlet, it is desirable to compute an "effective" pressure loss which is

indicative of the over-all performance of the inlet. That is, It is

4Effects of changes in mass-flow ratio wlll be discussed in a later

section.

.... -°. °

"'-_f • w
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desired to determine the difference between the total pressure in the

free stream and that which would be measured in a plenum chamber after

perfect diffusion. While the exact determination of such an effective

total-pressure loss is, in general, a difficult problem, several methods

have been proposed which involve averaging the local total--pressure

losses in a variety of ways. Among those that have been used are a

simple area average and averages "weighted" according to the local mass

flows or the logarithm of the local mass flows. A theoretical analysis

of the diffusion in a straight pipe of flows having initially nonuniform

velocity distributions indicates that a simple ares average, in addition

to being the simplest to calculate, yields results which are generally

as accurate as (and in some cases more accurate than) those obtained

with the more complicated weighted averages.

In accordance with the results of the theoretical plpe--flow analy-

sis, the pressure--loss parameter in this report will be determined on

the basis of a simple area average. Thus at low speeds,

v \ qo /av
(1)

where A D is the duct-entrance area. The portion of the quantity

(_/qo) which is taken into the duct entrance (internal loss) can be

expressed as the sum of the losses discussed. That is,

({L + l (2)

where C is the fraction of the bracketed losses taken internally. Tae

ensuing sections of this paper will be primarily concerned with the

theoretical determination of the losses indicated in equation (2). The

external loss (_/qo)e will also be investigated.

VORTEX INVESTIGATION

A detailed mathematical analysis of the rolllng-up process by which

the vortex sheets approach tbelr stable form would involve a study of

the time history of each vortex filament leaving the ramp walls. Such

a detailed study may not be necessary, however, since the major interest

for the present problem is the determination of quantities which will

influence the magnltude and distribution of the pressure losses in the
inlet. It will be shown in the analysis that the magnitude of the pres-

sure losses in the vortex regions themselves is determined (within the

limitations of the theory) solely by the value of the circulation. The
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purpose here is therefore to develop an expression for the vortex cir-
culation at any station in the inlet. Toward this end, recourse will be
had to the method of dimensional analysis, which will furnish muchof the
desired information without undue complication.

Determination of Circulation

Consider a divergent--ramp inlet of arbitrary geometry mounted in
an infinite flat wall as shownin the sketch.

A

A

A
Profile view

Supposenow that the circulation dr shed from one wall in an element
of length dx in the stream direction is taken to be a function of the
local changes in width and depth of the inlet, the free-streamReynolds
number and Machnumber, and the mass-flow ratio of the duct. This state-
ment maybe expressed in functional notation as

dF = dF (db, dh, R, M, ml/mo) (3)

f

The analysis will be concerned with an inlet operating at a constant

Reynolds number and Mach number, and the effect of mass-flow ratio will

be taken into account by the introduction of another variable, namely,

the velocity component w perpendicular to the ramp wall at the edge

of the ramp. (See preceding sketch.) Equation (3) is thus reduced to

dF= dC (w, db, dh)

Dimensional analysis shows that there are only two basic dimension-

less combinations of these four variables. They are

dr and db

wdh dh

. _ .
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Therefore, there is some function

the equation

That is,

or

of these variables which satisfies

¢ I =0 (5)

(6)

Now, from the geometry of the inlet (see preceding sketch), expressions

can be written for dh and db in terms of the local angles m and

and the differential distance dx, thus

dh = dx tan _

Q

or, for small angles,

db --2dx tan

dh -- m dx

db = 2_dx

The velocity component w is a function of the free--stream velocity,

the mass-flow ratio, and the geometry of the inlet. Similarity con-

siderations indicate that it is reasonable to assume that w is linearly

dependent upon the free-stream velocity and is composed of two additive

parts, one proportional to _ and the other to _, that is,

w = (K l _ + K 2 _)u o (7)

where KI and K 2 depend only upon the mass-flow ratio. Since the

ramp angle m is always positive, it is apparent that under this assump-

tion if _ equals 0 (parallel walls) there will still be some vorticity

shed into the inlet; whereas at sufficiently large negative values of

(convergent walls), the velocity w vanishes and then takes on negative

values which have no meaning in this analysis.
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!

By use of the substitutions Just discussed, equation (6) can be
rewritten

or

2w
dr= uo cLdx • (KI _ + K 2 _) ¢(-_-)

dr _2 . (K 1 (8)

The circulation at any station (say x=Z) is then given by

r --Uo .f_c_2-(K1 _ + K 2) f(-_) dx

_o

(9)

Before the integration can be carried out by graphical or numerical

methods, there remains the problem of determining K&, Kin, and f.

Since the effect of variations in mass-flow ratio is primarily one

of blockage at the duct entrance, it is apparent that such an effect

will be confined largely _o stations near the duct lip; that is, the

variation of KI and K 2 with ml/m o will be small over most of the

ramp length. Hence, for smoothly faired inlets the net effect of mass-

flow ratio on the integrated circulation r will be small. Thus,

except for small changes due to mass--flow ratio, equation (9) can be
written

f

Z

r --uo /
o

(io)

where g is now an unspecified function of a single variable _/a.

Within the assumptions of this analysis, the function g can be

determined from a single test series involving divergent-ramp inlets of

linear geometry since for this case equation (10) can be written

= r(z)

In equation (i0), the circulation varies directly with the free--

stream velocity uo. However, this is due to the assumption that the

inlet was mounted in an infinite flat wall. If, on the other hand, the



NACATN 2323 13

inlet were mounted in a fuselage, the velocity to be used would be a

mean local velocity u I over the region in which the inlet is installed.

Thus, equation (10) would be

_Z

r :ul Jo
(ll)

Due to the nature of the assumptions made in this section with

regard to the velocity w, the equations developed for the vortex

circulation are not generally applicable to convergent--ramp inlets.

Vortex Pressure LQsses

A simplified analysis will be carried out here to investigate the

pressure characteristics of the vortices and their effect on the losses

in total pressure. In particular, it is desired to determine an expres-

sion for the vortex pressure loss " (_/qo)v" It will be assumed at the

outset that the inlet is sufficiently slender that velocity gradients

in the stream direction are negligibly small in comparison with those

in the transverse directions. In addition, each of the actual vortex

regions will be replaced by an idealized potential vortex containing

a rotational core of finite diameter. This implies that the total--

pressure losses in each vortex will be unaffected by the presence of the

other vortex or by the bounding surfaces. The analysis is therefore

equivalent to determining the pressure losses in a single cylindrical

vortex rotating in a uniform incompressible stream flowing parallel to

the axis of rotation, as illustrated in the following sketches:

Actual inlet vortex flow

in cross section
Approximation to each vortex
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With the preceding assumptions, the general expression for the
losses in both vortices can be written

v AD
(12)

• _.,=O_:-.._f.
Moreover, since vortex total-pressure losses appear only inside the

vortex cores, s equation (3.2) can be expanded to give

_oo -- D_[_o (H° -- H1) r dr dq)
(13)

where rc is the radius of the vortex core.

The total pressure HI anywhere in the fluid is expressed in

general as the sum of the local static aaddynamic pressures.

".'_ _. "" _i

1
z_ = p + _-_ CUo2 + _) (I_)

where uo is the velocity of the uniform stream (parallel to the vortex

axis) and q is a peripheral velocity in the vortex. The condition to

be satisfied by the transverse velocities q is that the pressures must

everywhere be balanced by the centrifugal force; that is,

= p _ (15)
dr r

Therefore, the radial variation of total pressure through the vortex can

be found by differentiating equation (14), using the relationship of

equation (15), thus

(16)

SThe vortex core will be defined in this analysis as a circular region

surrounding the vortex center in which the peripheral velocities

deviate from those of the potential vortex.

i __ i _
I ..... ! ii
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This equation can be integrated to give an expression for the total

pressure at any point in the vortex. In general,

Hx(r) - HI(@o_ = Ha(r) -Ho = 0 _ + q dr

@@

= P -- +q--r dr+ --+qr dr

(17)

The first integral vanishes since q = F/2_r everywhere outside the core,

giving

Hl(r) -Ho = p + q dr (18)

Substitution of the above expression (with limits reversed) into

equation (13) yields

-- = rc r dr rc

qo V ADq° r°

+ q(ro) dq(ro) ] dro

dro ]
(19)

Now, by reversing the order of integration, equation (19) can be written

(_)V = 4_D _orC(qe q dq) _or% dr_o ADqo ro + _oo dr°
(20)

which reduces to

(_)V 8_ _rcl (qm dq)_o = ADU--_O 5 r° + q r°e _ o dr°
(2l)
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Observing that the expression in the parentheses is now a perfect dif-

ferential, equation (21) can be integrated directly to give

_o = ADU-_o _ qe(r°) × rOe 2_o = qe(r°)× rce
(22)

But at the edge of the core the peripheral velocity q is

2_r c

Thus, the total-pressure loss in the _ortex pair is finally given by

(23)

It is evident from equation (23) that, within the limitations of

the assumptions made, the integrated vortex pressure losses are

independent of the size and velocity distribution of the vortex cores,

and depend only upon the circulation.

BOUNDARY--LAYER INVESTIGATION

Boundary--Layer Analysis s

As was mentioned earlier, the boundary layer of primary interest

in calculating inlet pressure losses is that on the floor of the ramp.

In order to calculate the boundary-layer growth in a ramp having non-

para&lel walls, it is convenient to construct a variation of the Ka_m_n

momentum equation which will apply to a diverging flow over a flat plate.

For this analysis, the following assumptions are made in addition to

those usually used in boundary--layer theory:

1. Incompressible fluid

SThis section presents (with some modification) a condensation of a

thes_s su%mi_ted by the senior author to Cornell University in 1949

for the degree, Master of Aeronautical Engineering.

Io
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2. Straight divergence of the ramp

3. The flow near the ramp floor is in radial lines emanating

from the vertex of the straight divergent ramp

There are three possibilities regarding the character of the

boundary layer along the ramp floor: (1) The boundary layer is laminar

over the entire ramp; (2) the boundary layer is turbulent over the entire

ramp; or (3) transition occurs somewhere on the ramp. The first two

cases will be treated individually and the third will be constructed by

combining the first two.

Y

w,

2

With the assumption of radial flow,

it is convenient to introduce a cylin-

drical coordinate system to use throughout

the analysis. Since the tangential

velocity w I (see sketch) is identically

zero everywhere in a radial flow, the

equation of continuity can be expressed

in cylindrical coordinates by

divV=1 3 (ru) +_v
3-7 = o

while the boundary--layer equation in this coordinate system is given by

_u 3u 1 dp + i av
v dr d--9 (25)

(See reference 3.) These equations will be used to derive a momentum

equation for radial flow which can be integrated to give an expression

for the boundary--layer growth along the ramp floor.
I-

Equation (24) can be rewritten as

8 1 _ (ru) dy (26)
V _ _ I

r _r

If this substitution is made in equation (25), noting that

_v_u : _ (uv)-u--
v _y _y _y

2
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and that

o_ _ (uv) dy uv ul dy
By o o _r r

then equation (25) can be integrated over the boundary--layer thickness
and reduced to the form

!

I

!

J

4
f
I

i
t

I

I

) <foo )r pumdy -- u I ..._ r p u dy = -- r5 dp _ r_o
dr

where u I is the velocity at the edge of the boundary layer and To

is the value of T at y = O. Further, by introducing the definitions

of momentum thickness and displacement thickness of the boundary layer

8

e = pu(u I -- u) dy

and

(27)

ifo _" : 5-c7 p(ul- u) dy

and noting that at the edge of the boundary layer equation (2D) gives

dp dul
dr -- PUl d--_-

equation (27) can be written in terms of momentum and displacement

thicknesses as

e
de dul (2e+5 _+pul a rou12_+ pul-_- r - = T o

This is a momentum equation which reduces to that given by Karman

(reference 4) for the case when r is infinite (parallel flow).

h

i

(28)
t
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Laminar Case

For the laminar case, equation (28) can be put into a form involving

only the total boundary--layer thickness 5 by using the standard

functional notation for the velocity profile inside the boundary layer

u : uxf(_ , r) : ulf(q,r)

That is, the momentum and displacement thicknesses are replaced by the
expressions

e :sn ; 8"=87 (29)

where

n - J (f_f2)an
Jo

_ rl
; 7 2o (z-f)dn

Note that £ and 7 are simply functions of r which are defined once

the variation of f with 3 (i.e., the velocity profile) is known.

If it is further noted that

d

/_uh _ _ ul If(o,r)]

where ---! [f(o,r)1
dn

then equation (28) becomes

where v = _/0-
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If a Pohlhausen velocity profile is assumedto exist in the laminar
boundary layer, that is,

= f = g_ + c_2+ d_s + e_4
ul

where g = ]2 + k c = -- k d = _ -- k; e 6 -- k and k 8a dUl.
6 2 2 6 V dr

the expressions for _, 8, and 7 are immediately found to be

= A+Bk+Ck e

= D+Ek

7 = F+Gk

where A, B, C, D, E, F, and G are Constants. This leads to the final

expression for the laminar boundary-layer growth (in dimensionless form)

2_ 2_ In" 1 dU (2_+ 7) +R(B+2Ck)_ dmU 1

Z dr 1 + ( +aCX)RdU

where

and

R = Reynolds number = -u_ = constant
V

Equation (31) is seen to be an ordinary, flrst-order, nonlinear differ--

ential equation and can be solved numerically for any known pressure

distribution, as long as laminar separation does not occur. Since all

the quantities on the right side of the equation are known at the

beginning of the ramp, the initial rate of growth (the derivative) can

be calculated directly from the equation. Then, applying this rate of

growth over a small increment of length, a new value of boundary-layer

thickness is obtained which can be used again in equation (31) to calcu--

late a new rate of growth. By repeating this procedure, the boundary-

layer thlckness can be determined over the entire ramp length. The

solution of equations of this type is discussed in appendix A.

I
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Turbulent Case

If the velocity u is properly redefined, equations (27) and (28)

can be applied to the case of the completely turbulent boundary layer.

Thus, if u is interpreted as the mean velocity at a height y in the

boundary layer, and if the shape parameter H = 5 "/e is introduced, 7
equation (28) becomes

1]ae 1 _ (E+2) + o (B2)
dr dr r pul _

This equation reduces to the familiar two-dlmensional momentum equation

for the case when r is infinite, and to the equation derived in refer-
ence 5 for conditions along the center line. The general equation has
also been derived in reference 6.

Until a rational theory is developed which gives the velocity

distribution through the turbulent boundary layer and the corresponding

skin friction, empirical relationships must be used to link H and
with e. By use of the method of reference 7, equation (32) can be

put into dimensionless form by the following transformations:

pul 2

If these substitutions are made in equation (32), in addition to the

' dimensionless quantities already introduced for the previous case, the

final expression becomes

dX+5 F1 dU • 1] 5.d-"_"_ L5 _(H+2) +- x =-._ 4 u 1/4
(33)

Equation (33) can now be solved for any given pressure distribution by

using the variations of H and _ with _ which are furnished by

7
The applicability of such a p_rameter to radial flows has been Justified

ex_erlmentall_ b_ Kehl (reference 5).
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reference 7 in _hich it is established that both are functions of A

only, where (in this case)

A= \dr u_

These curves are reproduced in figure _.8 Thus, equation (33) furnishes

a differential equation for the growth of the fully turbulent boundary

layer along the divergent-ramp floor. This equation, being of the same

form as equation (31), can also be solved numerically. (See appendix A.)

Other methods have been proposed for solving equation (32) which

range from assuming that H is constant with _ to using a rather

involved expression for the variation of H with _. The latter

method (see reference 8) is useful for cases in which separation is

approached.

l L

•oO

Laminar-Turbulent Case

A solution for the case involving transition from the laminar to

the turbulent boundary layer can be obtained by combining the cases

already discussed. That is, the boundary--layer growth can be calculated

up to the point of transition by equation (31) and after complete transi-

tion by equation (33). To complete the solution, some information is

required regarding the occurrence of transition. Since there is at

present no satisfactory theory for predicting the location and manner of

transition, it will be necessary in application to make some appropriate

assumptions, such as:

I. Sudden transition from a laminar profile of the Pohlhausen

type to a fully turbulent boundary layer at some reasonable

location such as the minimum-pressure station on the ramp

No discontinuity in momentum thickness at the point of transi-

tion

Under these conditions, the boundary layer momentum thickness can be

calculated over the entire ramp floor (if separation does not occur) by

using the momentum thickness (as found by equations (31) and (29)) at

the assumed transition point to determine the initial value for the

integration of equation (33).

8Note that it has been assumed that the relationship given in

reference 7 can be applied to the case of radial flow.
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It can be seen in the foregoing analysis that equations (31) and

(33) can be applied to the case of the convergent ramp if a radial flow

is assumed and the distance r is now measured in the upstream direction

from the point of convergence. Furthermore, if it is noted that along

the center line of the converging or diverging flow i/r = i/x =

(i/b)(db/dx), it can be concluded that divergence has an effect on the

boundary layer which is analogous to that of a favorable pressure

gradient. Thus, the boundary-layer growth is retarded by divergence

while it is accelerated by convergence. This phenomenon has been illus-

trated by wind-tunnel measurements of the boundary--layer growth along

the center lines of parallel-walled and divergent-walled ramps. A com-

parison of such measurements is presented in figure 9 which has been

reproduced from reference 1.

Boundary--Layer Pressure Losses

From the equations Just developed, one can calculate the boundary--

layer thickness at any station on the ramp floor. The quantity of

primary interest in determining the efficiency of an aireinletlh°wever3Ther fore a
is the dynamlc-pressure--recovery ratio I- AH/q o.

relationship will be established between the boundary--layer thickness at

the duct entrance and the loss in total pressure due to the boundary

layer. Since for a radial flow the boundary--layer thickness is essen-

tially constant across the inlet 3 this will amount to a two-dlmensional

analysis.

The total--pressure loss at any point in the boundary layer is

--No

If the expression for the floor boundary--layer pressure loss is written

as

/°
where d is the depth of the duct entrance (see fig. 5), the integral

can be evaluated by noting, from the expressions previously given for

e and 8 _, that

8

ou dy --ouI(6 -8*)

__ ] ___ _
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and

pu2 ay = pul_(8 -8" - e)

With these relationships, equation (35) reduces to

(4 1 e (36)
= _ = _ \Uo/

Thus, if the boundary--layer thicknesses 8 and 5* are determined

from equations (29), (31), and (33), the loss in dynamic--pressure

recovery due to boundary layer on the ramp floor can now be calculated

for any of the three possible conditions considered -- the completely

laminar case, the fully turbulent case, or the case involving transi-

tion. Note that the ratio ul/u o of equation (36) is not the same as

the mass--flow ratio but is determined by the local pressure coefficient

on the ramp floor.

If it is desired to calculate the boundary--layer pressure loss at

one station (say the duct entrance) without determining the boundary--

layer growth over the entire ramp length, the calculations can be

greatly simplified by using the approximations first introduced by

Falkner (reference 9) regarding the shape parameter H and the shear

stress 7o. By this expedient, one can integrate the momentum equation

directly to obtain an expression for the boundary-layer momentum thick-

ness at the desired station in terms of the initial momentum thickness

and the velocity distribution over the ramp.

Since Falkner'sintegration was performed on the two-dlmensional

momentum equation, the method will be extended here to the case of

radial flow. The momentum equation in the form of equation (32)

d___e+ [ l__d_.E_ (H+ 2)+i IS = v__9._o (32)
dr u I dr r puxm

__......-..,_'.'.'_=
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can be simplified by introducing the shear stress relationship suggested

by Falkner

vo k kv n

pul _ R0n e-_In

Equation (32) can now be written (in dimensionless form) as

d_d---8+[ 1dUud_ (H + 2)+ V] k
-- 8 = -- e -u (37)

UnR n

where

e e r ul UoZ
=T' u=--, and R--Uo W

This differential equation is of the Bernoulli type and can be integrated

directly if H is assumed constant. The resulting solution is

eS - 1 [(n+l) ._n ._1 2 (e ) ]_,au H+2 _n+_u(H+1)(n+1)+l d| + I_.I.U.IH+e n+1

1
m

n+ 1

(38)

where i and 2 refer to the initial and final stations on the ramp.

Equation (38) then gives the value of 0(or 9Z) to be used in

equation (36), if the values of H, k, and n are specified. For

the laminar boundary layer H = 2.592 (Blasius profile), k = 0.2205,

and n = 1. For the turbulent boundary layer, H is generally assumed

to be about 1.5, n about 1/6, and k about 0.0065_ although several

other values have been suggested. These are discussed further in

reference lO.

EFFECTS OF MASS--FLOW RATIO

Much of the analysis thus far presented has been formulated without

attention to the presence of the duct entrance. As interest is focused

on stations approaching the entrance, consideration must be given to

effects brought about by changes in mass--flow ratio. An understanding

of the most immediate consequences of changes in mass-flow ratio may be

gained by simple continuity considerations.
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As the mass-flow ratio decreases,

more air which would have gone into the

duct must spill out over the lip and ramp

walls ahead of the entrance, as shown in

the sketch. Since the vortex filaments

must follow the paths cf the streamlines,

it is apparent that the vortices may not

be completely swallowed by the duct. In

fact, as the vortices approach the duct

entrance, they must, at very low inlet

velocities, pass over the lip and outside

the duct.

i

In order for the vortices to move

away from the ramp floor at stations near

the duct lip, the vortex sheets must leave

the ramp walls at increasing angles until

finally they break away from the main
surface as shown in the sketch. When the

vortex sheet leaves the surface in this

manner, a region of secondary vortical

flow introducing additional pressure losses

appears over the main surface just outside

the inlet. In the extreme case, a distinct

secondary pair of vortices may be formed

in these regions rotating in a sense oppo-

site to that of the primary pair. These

additional losses are a function of the

mass--flow ratio and the ramp divergence and may be expected to decrease

with increasing divergence and with increasing mass-flow ratio. Since

these losses occur on the main surface, however, in regions where the

flow is directed away from the inlet, they cannot enter the duct and must

appear _s external drag. Thus, there are, in general, three important

direct consequences of reducing the mass-flow ratio: (1) Due to the

increased adverse pressure gradient, the floor boundary layer is thickened

and may separate; (2) the rolled-up vortices are moved farther away from

the ramp floor and may move entirely outside the duct; and (3) regions of

separated or vortical flow may appear on the main surface near the ramp

edges. This third effect is augmented by the fact that the vortices cause

the outboard sections of the llp to operate at a higher angle of attack

than the center section. This tends to produce regions of separated flow

above the outer edges of the lip, particularly at low mass-flow ratios

where the angle of attack of the entire lip is increased.

Since any pressure losses that are not taken internally must appear

as external drag, several interesting observations can be made regarding

the variations of ram recovery and external drag with mass-flow ratio.

Of the three effects of mass-flow ratio enumerated above, the first and

third both represent increased losses as the mass-flow ratio is reduced.

4
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However, the floor boundary-layer loss is entirely internal while the

main surface separation losses are entirely external. The vortices, on

the other hand, represent a loss which is relatively constant with mass-

flow ratio but is sometimes taken internally and sometimes taken exter-

nally. With this information the variations of ram recovery (or loss)

at the duct entrance and external drag with mass-flow ratio can be pre-

dicted qualitatively, as shown in the following sketch for a given

divergent-ramp inlet:

Since part of the losses swallowed by the duct at high mass--flow ratios

arise from boundary layer taken from the fuselage surface, the incre-

mental external drag may be expected to become negative as shown. In

fact, an expression can now be written for the total-pressure loss ccntri-

buting to external drag:

(39)

where (_/qo_LC refers to the boundary--layer-control action which the

inlet performs on the fuselage, while (_/qo_Ep represents the loss

due to separation of the fuselage boundary layer near the ramp edges.

The curve shown in the preceding sketch for the variation of floor

boundary-layer loss can be calculated by the use of equations (36) and

(38) if the ramp pressure distribution is known for each mass--flow

ratio. The maximum value for the vortex loss curve is given by

1/2_AD (F/Uo) 2 (equation (23)), while the values at lower mass--flow

ratios depend upon the portion C of the vortices which is swallowed

by the duct. This quantity depends upon the actual size and location

of the vortex cores, which have not been determined theoretically.

Therefore, an experiment was conducted which will aid is establishing
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the desired information. (The tests will be discussed and the results

presented in a later sectlon.) It can be seen from the loss curves of

the foregoing sketch that there will be an optimum mass-flow ratio at

which the combined loss in ram recovery due to vortices and boundary

layer is a minimum.

It will be noted that the losses due to vortices and floor boundary

layer have been added directly to obtain the total loss in ram recovery.

This raises the question of interaction between the vortices and the

floor boundary layer. It was pointed out in the earlier discussion

that the vortices cause the boundary layer to thin near the center of

the ramp and thicken near the walls. In addition, there will be some

tendency for a portion of the thickened floor boundary layer near the

ramp walls to become entrained in the vortices. The magnitude of these

effects on the total losses will probably be small.

Another boundary--layer phenomenon that has not yet been discussed

is the entrainment of fuselage boundary layer into the vortex cores.

The total-pressure loss due to this entrainment (_/qo)BLS can be

expressed in equation form if the width of fuselage surface from which

boundary layer enters one vortex is denoted by s:

(40)

The integral in equation (hO) has been evaluated previously

(equations (35) and (36)), so that equation (40) reduces to

2es (41)
T.s

f

Note that in this instance e and ul are measured Just ahead of the

inlet ramp. Equation (41) requires, of course, that the boundary layer

does not separate at the ramp edges (as discussed previously).

The distance s will actually depend on the mass-flow ratio,

increasing with increasin__ mass--flow ratio. An estimate of the order of

magnitude of the loss (£_q/qO)BLS can be obtained by taking s to be

the projection of the ramp wall in the stream direction; that is,

2s = bx= z - bx= 0
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in which case equation (_i) would become

A

A-A

The losses due to the vortices and

entrained boundary layer give rise to the

question of possible methods for reducing

these losses im the duct entrance. Since the

portion of these losses entering the duct is

determined by the relative positions of the

duct lip and the vortices, the obvious method

of accomplishing the desired result is either

to submerge the lip deeper into the fuselage,

or to force the vortices farther away from

the ramp floor by the use of "deflectors."

(See sketch.) It should be realized, however,

that either of these expedients can at best

only convert internal pressure losses to

external drag. Furthermore, each method has

additional disadvantages which might cancel

entirely the beneficial effect on recovery. If the lip is further sub-

merged, the boundary-layer thickness on the floor will then represent

a larger portion of the dact depth, thus Imcreasing (_/qO)BLF" If,

on the other hand, the vortices are moved out, then their beneficial

effect in discouraging thickening and separation of the floor boundary

layer is reduced. Thus, the designer must exercise great care In the

choice of methods for increasing the pressure recovery of a submerged
inlet, i

EFFECTS OF COMH_SSIBILITY

The entire analysis presented in this paper has been for an incom-

pressible fluid (M=O). However, some pertinent observations can be made

regarding the effects of compressibility on the pressure losses con-

sidered.

Studies of slender wings and bodies at small angles of attack have

shown that the effect of Mach number becomes negligibly small as the

slenderness is increased. Similarly, for the slender ramp plan forms

customarily used in submerged inlets, the vortex losses, which result

primarily from flows in the transverse planes, can be expected to show

little effect of Mach number.

J
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The boundary--layer growth is associated primarily with the longi-

tudinal flow which is influenced by compressibility to a greater degree

thou are the transverse flows. In particular, pressure gradients become

steeper with increasing Mach number. In the case of the submerged

inlet, where the pressure gradient is adverse over most of the ramp

length, an increase in boundary-layer thickness may be expected with

increasing Mach number due to the change in pressure distribution. On

the other hand, for a fixed pressure distribution, a decrease in

boundary-layer thickness is indicated due to local viscosity changes

brought about by aerodynamic heating. Since this latter effect is

known to be small at subsonic speeds, the effect of compressibility can

be almost entirely taken into account by using (as demonstrated in

reference ll) the actual compressible pressure distribution in the incom-

pressible boundary-layer equations. It is therefore concluded that the

analysis presented in this report can be applied with reasonable accuracy

to compressible flows at subcritlcal Mach numbers.

In considering effects on the ram pressures due to increasing Mach

number, care must be taken in the definition of ram recovery, since the

reference quantity PUo upon which the inlet efficiency is based

at low speeds no longer represents the actual available ram pressure at

the higher Mach numbers. In fact, if the inlet efficiency is based upon

! DUo 2 at higher Mach numbers, efflclencies in excess of i00 percen_
2

may be obtained, purely as a result of the failure to account for the

increase in available ram pressure. Such a difficulty is generally

overcome by discarding the approximation of equation (1) and dealing

wlth the quantity (HI - po)/(Ho - Po)av which is called the ram recov-

ery ratio. This quantity differs from the dynamlc--Dressure recovery

-- Ma M 4

ratio 1 A_ by the compressibility factor F=I+_* = i+ i/i-+ _ + ...,
qo

so that at low speeds the two efflclencles are identical, as indicated

iN equation (1). These and other related quantities are discussed in
reference 12.

WIND-TUNNEL EXPERIMENT

A brief wind--tunnel test was conducted in the Ames 7-by iO-foot

wind tunnel to study experimentally the vortex pressure losses discussed

in this paper. A large-scale inlet of linear geometry was mounted in a

false wall which allowed the tunnel-wall boundary layer to pass beneath

it, and measurements were made of the total-pressure losses outside the

ramp floor boundary layer, both inside and outside the duct entrance.

The model and installation of total-pressure rakes are illustrated in

figure 6. Distributions of total-pressure recovery were obtained over

the mass-flow ratio range for a number of ramp divergences, keeping the

duct entrance area and ramp length constant. A typical distribution

is shown schematically in figure 7. It should be noted that the maximum

angularity of the flow in the vortices was of the order of 15°; conse-

quently, the error in total-pressure measurements is believed to be small.
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By this means, it was possible to obtain the approximate locations
of the centers of the vortices, and to me_sure the integrated total-
pressure loss due to the vortices and the main surface boundary layer
entrained in the vortices, and the portion of that loss which entered
the duct. The results are given in figures 8 and 9. At the lower
mass-flow ratios, flow separation occurred on the main surface and it
is believed that the failure to distinguish this loss from the losses
in the vortices is responsible for the apparent variation of total vortex

loss with mass-flow ratio. An important point regarding figure 8 is

that (_/qo_ + (_/qo)BLS does not go to zero at zero divergence.

This is in keeping with the analysis since there should be a vortex loss

proportional to the ramp angle _ which was held constant in the test.

It should be pointed out that the variation of the fraction C

with mass-flow ratio (fig. 9) depends somewhat upon the shape of the

duct lip, as well as upon its vertical location. Such influences were

not investigated.

Since the pressure losses measured in the vortex regions include

(_/qO)BLS, it is not advisable to use these data with equation (23) to
determine the unknown function g(_/_) of equations (i0) and (ll).

The actual determination of this function would require detailed

measurements of the magnitude of the circulation over the entire range

of mass--flow ratios and ramp divergences.

CONCLUDING REMARKS

A theoretical study has been made of the flow in submerged air

inlets in order to determine the effects of some of the important design

parameters on the ram-recovery characteristics of the inlets at low

speeds. Inlets having parallel, divergent, and convergent ramp walls

have been considered and their fundamental differences discussed. As a

result of the analysis presented, the integrated total-pressure loss in

the entrance of a three-dimenslonal submerged air inlet has been broken

down into its essential components which can now be calculated subject

to the restrictions discussed in the foregoing sections.

In general, the major total-pressure loss taken internally at the

duct entrance can be expressed as

where C is primarily a function of the mass-flow ratio. Some experi-

mental values of this function have been given in figure 9 for several
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ramp divergences. Equations have been _veloped in this report for
calculating the other quantities contributing to (A-_/qo)i.

Similarly, the major total--pressure loss taken as external drag
can be expressed as

where (_/qo)BLC represents the reduction in external drag due to the
boundary-layer-control action of the inlet on the fuselage, while
_/qo)sEP represents the loss due to separation of the fuselage
boundary layer at the ramp edges. Neither of these two quantities has
been determined, although their dependenceon the mass--flow ratio has
been discussed.

\

( qo)B 

The regions of total--pressure

loss that have been considered in

this report are shown schematically

in cross section in the sketch.

It was found that divergence of

the ramp walls has two major effects

on the ram.recovery characteristics

of the submerged inlet. On the one

hand, a vortex pair is created in
the inlet which introduces an addi-

tional source of pressure loss -- the

On the other hand, the ramp wall divergence creates avortex cores.

favorable effect on the boundary--layer growth along the ramp floor, thus

reducing the pressure loss due to the boundary layer.

The equations developed in the analysis indicate that the pressure

loss in the vortex cores is determined approximately by the inlet

geometry, while the portion entering the duct entrance depends primarily

upon the mass-flow ratio and the shape and location of the duct lip.

Due to the nature of the flow field created by the rolled-up vortex

sheets in the inlet, a measurement of ram recovery in the plane of the

duct center line can be taken only as an indication of the minimum

boundary-layer thickness on the ramp floor. Such a measurement is there-

fore inadequate for predicting the ram-recovery characteristics of a

submerged inlet having a divergent ramp.

A method has been presented for calculating the boundary-layer

growth along the ramp floor for parallel, divergent, and convergent ramp

walls, for a known ramp pressure distribution. It was found that the

i
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effect on the growth of this boundary layer due to divergence of the

ramp walls is analogous to that of a favorable pressure gradient. Con-

vergence has a corresponding adverse effect.

Since the boundary-layer losses on the floor decrease with increas-

ing mass--flow ratio while the internal vortex losses increase with

increasing mass-flow ratio, there must be an optimum mass-flow ratio

for which the combined losses in ram recovery are a minimum. By the

same reasoning, it can be concluded that there must be an optimum diver-

gence angle for a straight ramp which will give minimum total-pressure

losses.

The total vortex pressure loss was found to depend upon the inlet

geometry and the local pressure coefficient, and to a lesser extent upon

the mass-flow ratio. The ramp boundary-layer losses are determined by

the momentum thickness, the local pressure coefficient, and the boundary-

layer--shape parameter.

Ames Aeronautical Laboratory,

National Advisory Committee for Aeronautics,

Moffett Field, Calif., Jan. 12, 1991.



34 _ACA T_ 2323

APPENDIX A

SOLUTION OF THE BOUNDARY-LAYER GROWTH EQUATIONS

i

Since equations (31) and (33) are both of the general form

f(x,y) (At)dx =

they can be solved by one of the standard numerical methods of integra-

tion. Such a method consists, generally, of determining from equation

(A1) the derivative or slope dy/dx for the given initial values of x

and y (in the present case, this amounts to specifying the boundary--

layer thickness at the beginning of the ramp) and using that slope over

a small increment of x to determine the next value of y, and thereby
the next value of dy/dx. This procedure is repeated until the function

y has been evaluated over the desired range of x. Tae following table

outlines a systematic method in which the error due to taking finite

increments of x is kept relatively small. Naturally, the accuracy of
the integration will be impaired if the increments of x chosen are too

large.

x y

X o

Xo +h

h

No +_

xo+h Yo+_s

Xl=Xo+h Yl =Yo +k

r

Yo

Yo +_

Yo +_

f (Xo,Yo)

f (Xo+ yo+ )

f (x° + h k 25' Yo + -_

f (xo + h, Yo + ks)

fXh

kl

km

k s

k4

|

z--1
2

+ke +ks

h = increment of x chosen for integration

The above table has been reproduced from reference lB.
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Figure 2.- Closeup of water tank with model mounted in position for

starting a run.
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Figure 3.-- Photographs of the transverse flow at successive stations in

a submerged inlet having divergent ramp walls.
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